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Abstract: Observational studies and randomised controlled studies suggest that vitamin D plays a
role in the prevention of acute respiratory tract infection (ARTI); however, findings are inconsistent
and the optimal serum 25-hydroxyvitamin D (25(OH)D) concentration remains unclear. To review
the link between 25(OH)D concentration and ARTI, we searched PubMed and EMBASE databases
to identify observational studies reporting the association between 25(OH)D concentration and
risk or severity of ARTI. We used random-effects meta-analysis to pool findings across studies.
Twenty-four studies were included in the review, 14 were included in the meta-analysis of ARTI risk
and five in the meta-analysis of severity. Serum 25(OH)D concentration was inversely associated
with risk and severity of ARTI; pooled odds ratios (95% confidence interval) were 1.83 (1.42–2.37)
and 2.46 (1.65–3.66), respectively, comparing the lowest with the highest 25(OH)D category. For each
10 nmol/L decrease in 25(OH)D concentration, the odds of ARTI increased by 1.02 (0.97–1.07). This was
a non-linear trend, with the sharpest increase in risk of ARTI occurring at 25(OH)D concentration <

37.5 nmol/L. In conclusion, there is an inverse non-linear association between 25(OH)D concentration
and ARTI.

Keywords: respiratory infection; vitamin D; systematic review; observational studies; 25-hydroxyvitamin
D; meta-analysis; acute infection

1. Introduction

Acute respiratory tract infection (ARTI) is very common, with most people experiencing at least
one episode of ARTI each year [1]. ARTI includes upper respiratory tract infection (URTI) and lower
respiratory tract infection (LRTI). The common cold and influenza are the most common ARTIs globally;
the highest rate occurs during the winter months in temperate areas with little seasonal change in
tropical regions [2]. During epidemic months, influenza can affect 20% to 50% of people worldwide [2].
Bronchitis and pneumonia are the two most common infections of the lower airways, and mortality
due to LRTI is high [3]. In 2015, more than 2.8 million deaths worldwide were due to LRTI; children
and the elderly are the most affected groups [3].

Vitamin D is critical for skeletal health and may play a role in other health outcomes, including
infection. Vitamin D status is estimated by measuring the serum concentration of 25-hydroxyvitamin D
(25(OH)D); this varies seasonally and the lowest concentration in the winter/spring months coincides
with the highest ARTI incidence, suggesting a link between vitamin D and ARTI [4]. This is supported
by laboratory studies demonstrating an important role of vitamin D in the immune system. Vitamin
D promotes the elimination of pathogens and suppresses prolonged inflammatory responses [5–7].
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It enhances the production of antimicrobial peptides such as defensins and cathelicidins, which offer
natural protection against microbial pathogens [8].

Many studies have investigated the link between 25(OH)D serum concentration and ARTI
and the effect of vitamin D supplementation on ARTI. Two recent meta-analyses of observational
studies considered associations between 25(OH)D concentration and ARTI incidence in children [9,10].
One included case-control studies in children aged ≤ 5 years and found higher odds of 25(OH)D
deficiency in those with LRTI [9]. The other found an inverse association between prenatal maternal
25(OH)D concentration and risk of ARTI in the offspring [10]. The most recent systematic review
and meta-analysis including older children and adults was published in 2015 as a conference abstract
only—it included 19 observational studies and found a significant inverse association between
25(OH)D concentration and risk of ARTI [11]. A systematic review of 25 observational studies and 14
randomised-controlled trials (RCTs) was completed in 2013 [12]. It concluded that there was an inverse
association between 25(OH)D concentration and risk of ARTI, but did not include a meta-analysis [12].
Some observational studies have found an inverse link between 25(OH)D concentration and severity
of ARTI, as measured by duration of the illness, hospitalisation and severity index [13–16]; however,
there has been no meta-analysis of these findings.

Results from RCTs investigating the effect of vitamin D supplementation on ARTI are inconsistent.
Two meta-analyses found a significant benefit of vitamin D supplementation on ARTI [17,18] while
another three did not [19–21]. There are indications of a greater protective effect in people with marked
vitamin D deficiency [20,22], but the trials were unable to indicate an optimal concentration of 25(OH)D.
We therefore conducted a systematic review and meta-analysis of observational studies to evaluate
the link between serum 25(OH)D concentration and the risk and severity of ARTI in adolescents and
adults. Findings from this meta-analysis will provide insights into the influence of vitamin D on ARTI
risk and severity, and give an indication of the optimal 25(OH)D concentration for ARTI prevention
and management.

2. Materials and Methods

The study protocol was registered with the PROSPERO International Prospective Register of
Systematic Reviews prior to commencement [23].

2.1. Search and Screening Strategy

PubMed and EMBASE databases were searched from their inception until 12th June 2019.
Keywords were chosen from the Medical Subject Headings (MeSH) terms in PubMed and explosion
(exp) of EMTREE terms in EMBASE. Essentially, we searched for the terms “vitamin d” or
“25-hydroxyvitamin D” or “25OHD” or “25(OH)D” or “hypovitaminosis D” in combination with
“respiratory tract infection*” or “respiratory infectio*” or “respiratory diseas*” or “pneumonia” or
“influenza” or “bronchiolitis” or “common cold”. The complete search strategies are shown in the
supplementary material (Supplementary File S1).

All titles, abstracts and full text were independently screened by two investigators, Hai Pham
and Aninda Rahman. Any discrepancies were resolved through consultation with Rachel Neale and
Mary Waterhouse.

2.2. Inclusion/Exclusion Criteria

Inclusion criteria: The eligibility criteria were: (1) observational studies including cohort,
case-control and cross-sectional studies; (2) published in English; (3) full text available; (4) reported
the association between circulating 25(OH)D concentration and ARTI risk or severity; (5) the target
population was healthy adults or adolescents aged 12 years and older.

Exclusion criteria: Studies investigating the link between 25(OH)D concentration and tuberculosis
or chronic lung conditions such as chronic obstructive pulmonary disease and asthma were excluded.
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2.3. Definition of Outcome

Primary outcome: The primary outcome was the risk of ARTI, defined as an acute infection of the
respiratory tract in either the lower or upper airway or with the location not specified. ARTI was either
self-reported via surveys or symptom diaries, or clinically confirmed with or without evidence from
X-rays or laboratory tests.

Secondary outcome: The secondary outcome was the severity of ARTI, defined according to the
duration of the illness, hospitalisation, admission to an intensive care unit, symptom severity score or
index, or mortality.

2.4. Quality Assessment

We used the customised Newcastle-Ottawa scale (NOS) to assess the quality of each study [24].
The NOS tools are slightly different for each study design but generally include three main categories,
namely: (1) selection of participants; (2) control for confounders; and (3) measurement of exposure or
outcome (Supplementary File S2).

2.5. Statistical Analysis Methods

We used STATA 13 (StataCorp, College Station, Texas, USA) and SAS 9.4 (SAS Institute Inc., Cary,
NC, USA) for statistical analyses. We included studies in the meta-analysis that reported either:

1. A measure of association between 25(OH)D concentration and ARTI risk or severity (odds ratio
(OR), relative risk (RR), hazard ratio (HR), mean difference (MD)) and their 95% confidence
interval (CI) or standard deviation (SD); or

2. Sufficient data to derive two by two tables of ARTI risk, comparing the lowest versus the highest
25(OH)D category.

We included the estimate from the most fully adjusted model for each study in the meta-analysis
comparing the risk of ARTI in the lowest versus highest 25(OH)D category. When a study reported
results using different 25(OH)D thresholds, we used 50 nmol/L as it was the most commonly used
threshold. Two studies reported HRs as the measure of association between 25(OH)D concentration
and risk of ARTI [25,26]; we included these two studies in the meta-analysis, considering the HR as an
approximation of the OR. A random-effects model was used to pool the results.

We used a method described by Greenland and Longnecker to estimate trends across categories
of exposure to calculate the effect of each 10 nmol/L decrease in 25(OH)D concentration on the risk
of ARTI [27,28]. This method estimates the covariances between multivariable-adjusted odds ratios
using the number of cases in each exposure category. We used variance least-squares regression to
compute the trends in two studies in which the number of cases in each exposure category was not
reported [25,29]. The representative value for each 25(OH)D category was assigned using either the
midpoint of the range or by subtracting or adding the half width of the adjacent exposure category
for open-ended categories [30]. We also used fixed effects to fit a restricted cubic spline model with
3 knots to evaluate a potential non-linear dose-response association between 25(OH)D concentration
and ARTI risk [28].

For the overall analysis of severity, we defined a severe ARTI to be one that had a moderate-to-high
severity score or resulted in death (no studies based on other severity outcomes were included). We also
performed a separate meta-analysis to assess the association between 25(OH)D concentration (lowest
versus highest category) and ARTI mortality.

2.6. Assessment of Heterogeneity and Publication Bias

Heterogeneity across studies was assessed using I2 statistics. We conducted meta-analyses
comparing the risk of ARTI in the highest versus the lowest 25(OH)D category stratified by: (i) infection
location if reported (URTI or LRTI); (ii) outcome measurement methods (self-reported or clinically
confirmed); (iii) mean 25(OH)D concentration in the study population (<60 nmol/L or ≥60 nmol/L;
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cut point chosen to maximize the number of studies included in each subgroup); and (iv) factors
considered as confounders (fully adjusted model or crude/non-fully adjusted model) to explore
potential sources of heterogeneity. We used funnel plots and the Egger test to test for publication bias.

3. Results

3.1. Identification and Selection of Studies

Figure 1 illustrates the study selection process. The PubMed and EMBASE searches yielded a total
of 1589 records after removing duplicates. We screened the full text of 33 studies and excluded nine
that did not meet the selection criteria. Of the 24 studies included, 10 reported the association between
25(OH)D and the risk of ARTI [25,29,31–38], eight reported on the severity of ARTI [14,16,39–44],
and six reported on both the risk and severity [13,15,26,45–47].
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Figure 1. The Prisma flowchart for study selection process. Note: ARTI = acute respiratory
tract infection.

3.2. Study Characteristics

The characteristics of the included studies are summarised in Tables 1 and 2. There were three
case-control studies, 13 cross-sectional studies and eight prospective cohort studies. The relationship
between ARTI risk or severity and 25(OH)D status was reported either by categories of exposure or
per unit increase in exposure. The cut point for 25(OH)D categories varied across studies; the upper
limit of the lowest category ranged from 25 to 95 nmol/L, and the cut point for the highest category
ranged from 25 to 120 nmol/L (Tables 1 and 2). Serum 25(OH)D concentration was measured using
liquid chromatography-mass spectrometry (LCMS) in four studies and non-chromatography assays in
19 studies. One did not specify which method was used to measure 25(OH)D concentration [44].
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Table 1. Characteristics of studies reporting the association between risk of acute respiratory tract infection and 25(OH)D concentration.

First Author
(Publication Year)

Year of
Study

Follow-Up
Time Outcome Participants

Age (Mean
± SD)/Sex

(% Female)

Sample
Size

Outcome
Measurement

Mean (SD)/Median
(Q1–Q3) 25(OH)D

(nmol/L)

Lowest
25(OH)D
Category
(nmol/L)

Highest
25(OH)D
Category
(nmol/L)

25(OH)D
Measurement

Method

Case-Control Studies
Jovanovich, A. J.

(2014) [32] 2008–2010 Pneumonia Cases: patients with CAP
Controls: patients without CAP

Age: 60 ± 17
Sex: 71% F 132 Laboratory or x-ray

confirmed
Cases: 70.1 (62.2–79.6)

Controls: 79.3 (71.1–88.1) 50 ≥50 INCSTAR RIA

Nanri, A. (2017)
[35] 2011 Influenza

Cases: employees with influenza
Controls: employees without

influenza

Age: 38 ± 12
Sex: 17% F 532 Self-reported

(past 6 months)
Cases: 56.1 (12.8) Controls:

55.9 (13.0) 50 ≥75 CBP assay

Mamani, M. (2017)
[45] NA Pneumonia Cases: patients with CAP

Controls: patients’ companions
Age: >18

Sex: 30% F 149 Laboratory or x-ray
confirmed

Cases: 54.7 (61.9) Controls:
48.1 (27.8) 25 >50 Diarosin CLIA

Cross-Sectional Studies
Ginde, A.A. (2009)

[29] 1988–1994 URTI NHANES III (1988–1994) Age: ≥12
Sex: 53% F 18,883 Self-reported

(past few days) 72.2 (52.3–92.1) 25 ≥75 Diasorin RIA

Quraishi, S.A.
(2013) [37] 1988–1994 Pneumonia NHANES III (1988–1994) Age: ≥17

Sex: 53% F 16,975 Self-reported
(past 12 months) 59.8 (44.8–79.7) 25 ≥75 Diasorin RIA

Khalid, A.N. (2015)
[33] 2001–2006 Acute

rhinosinusitis
NHANES
2001–2006

Age: ≥17
Sex: 51% F 3921 Self-reported

(past 24 h) 54.8 (39.8–69.7) 50 ≥50 Diasorin RIA

Monlezun, D.J.
(2015) [34] 2001–2006 ARTI NHANES 2001–2006 Age: ≥17

Sex: 51% F 14,108 Self-reported
(past 1 month) 52.3 (37.4–67.2) 25 ≥75 Diasorin RIA

Berry, D.J. (2011)
[31] 2002–2004 ARTI Birth cohort born 1958 Age: 45

Sex: 50% F 6789 Self-reported
(past 3 weeks) 52.2 25 ≥100 IDS OCTEIA

Robertsen, S.
(2014) [46] 2007–2008 ARTI Tromsø population-based study Age: ≥40

Sex: 57% F 6350 Self-reported
(past 7 days) NA NA Roche CLIA

Rafiq, R. (2018)
[38] 2008–2012 Common

cold NEO study, BMI ≥ 27 kg/m2 Age: 45–65
Sex: 56% F 6138 Self-reported

(past 1 month) 71.3 50 ≥75
Diasorin RIA,

IDS CLIA, Roche
CLIA

Lu, D. (2017) [13] 2011–2012 Pneumonia Hospitalised patients Age: 60–94
Sex: 31% F 163 Clinically diagnosed 30.0 (11.2) 25 ≥25 IDS ELISA

Scullion, L. (2018)
[47] NA ARTI Elite rugby players and rowers Age: 23 ± 3

Sex: 25% F 54 Self-reported
(past 6 months)

Summer
108.9 (102.8–115.4)

Winter
86.8 (81.8–92.1)

NA NA Crystal Chem
enzymatic assay

Prospective Cohort Studies
Aregbesola, A.

(2013) [25] 1998–2011 10 years Pneumonia KIHD study: middle age and
aging people

Age: 53–73
Sex: 49% F 1421 Clinically diagnosed 43.5 (17.8) tertile 1:

8.9–33.8
tertile 3:

50.8–112.8 HPLC

Porojnicu, A. C.
(2012) [36] 2007 winter

season ARTI Medical employees from a
hospital

Age: 20–57
Sex: 94% F 105 Laboratory or x-ray

confirmed NA NA HPLC

Sabetta, J.R. (2010)
[26] 2009–2010 5 months Viral ARTI Healthy adults Age: 20–88

Sex: 57% F 198 Clinically diagnosed
Laboratory confirmed 71.0 (2.0) 95 ≥95 Diasorin CLIA

He, C-S. (2013) [15] 2011 4 months URTI Young athletes Age: 18–40
Sex: 30% F 225 Self-reported

(4 month diaries) 53.0 (40.0–66.0) 12–30 >120 HPLC

Abbreviations: ARTI = acute respiratory tract infection; CAP = community acquired pneumonia; CBP = competitive protein binding; KIHD = Kuopio Ischemic Heart Disease Risk Factor;
IDS=Immunodiagnostic Systems; RIA=radioimmunoassay; CLIA=chemiluminescence immunoassay; HPLC = high performance liquid chromatography; LRTI = lower respiratory tract
infection; MS = mass spectrometry; NA = not available; NEO = Netherlands Epidemiology of Obesity study; NHANES = National Health and Nutrition Examination Survey; URTI =
upper respiratory tract infection.



Int. J. Environ. Res. Public Health 2019, 16, 3020 6 of 15

Table 2. Characteristics of studies reporting the association between severity of ARTI and 25(OH)D.

First Author
(Publication Year)

Year of
Study

Follow-Up
Time Outcome Participants

Age (Mean
± SD)/Sex

(% Female)

Sample
Size Severity Measurement Mean (SD)/Median

(IQR) 25(OH)D (nmol/L)

Lowest
25(OH)D
Category
(nmol/L)

Highest
25(OH)D
Category
(nmol/L)

25(OH)D
Measure ment

Method

Cross-Sectional Studies

Mamani, M. (2017)
[45] NA Pneumonia

severity
Hospitalised patients

with CAP
Age: 68 ± 10
Sex: 29% F 73

CURB-65 > 2

ICU admission

Death

Severe: 52.8 (77.5)
Non-severe: 56.5 (48.0)

Yes: 59.8 (88.4)
No: 52.8 (47.6)
Yes: 64.6 (91.8)
No: 53.0 (55.4)

<25 ≥75 Diasorin CLIA

Pletz, M. W. (2014)
[14] 2002–2008 Pneumonia

severity
Participants with

pneumonia
Age: ≥18

Sex: 43% F 300 Hospitalisation Severe: 32.0 (19.5)
Non-severe: 40.5 (25.0) NA NA Diasorin CLIA

Robertsen, S.
(2014) [46] 2007–2008 ARTI Tromsø

population-based study
Age: ≥40
Sex: % F 791 Duration of the illness NA NA Roche CLIA

Lu, D. (2017) [13] 2011 Pneumonia
severity

Patients with
pneumonia

Age: 60–94
Sex: 31% F 49 Duration of hospitalisation <25 ≥25 IDS ELISA

Kim, H.J. (2015)
[41] 2012–2014 Pneumonia

severity
Hospitalised patients

with CAP
Age: 18–96
Sex: 34% F 797

28-day all-cause mortality
Need for mechanical

ventilator
<50 ≥50 CLIA

Brance, M. (2018)
[39] 2015–2016 Pneumonia

severity
Hospitalised patients

with CAP
Age: >18

Sex: 59% F 167 CURB-65 ≥ 2 Severe: 29.0 (18.3)
Non-severe: 29.8 (18.8) <25 >50 Siemens CLIA

Yaghoobi, M.H.
(2019) [44] 2015 Ventilator-associated

pneumonia

Hospitalised patients
with

ventilator-associated
pneumonia

Age: 18–82
Sex: 37% F 84

Mortality in 28 days

Blood culture

Duration of ventilation
SOFA score

Yes: 61.5 (23.7)
No: 61.9 (20.8)

Positive: 53.4 (12.3)
Negative: 62.7 (22.3)

<75 ≥75 NA

Scullion, L. (2018)
[47] NA ARTI Elite rugby players and

rowers
Age: 23 ± 3
Sex: 25%F 53 Duration of the illness Summer: 4.8 (3.0)

Winter: 6.9 (4.3) NA NA Crystal Chem
enzymatic assay

Prospective Cohort Studies
Laaksi, I. (2007)

[16] 2002 6 months ARTI
severity Young military men Age: ≥18

Sex: 0% F 652 Number of days absence from
duty due to ARTI <40 ≥40 IDS OCTEIA

Remmelts, H.F.
(2012) [43] 2007–2010 30 days Pneumonia

severity
Hospitalised patients

with CAP
Age: ≥18

Sex: 44% F 272

ICU admission

30-day mortality

PSI > 3

ICU: 34.9 (23.8–46.3)
No ICU: 48.3 (30.8–68.4)

Yes: 25.8 (19.8–40.1)
No: 48.8 (32.4–68.9)

<50 >75 Diasorin CLIA

Holter, J.C. (2016)
[40] 2008–2014 6 years Pneumonia

severity
Hospitalised patients

with CAP
Age: ≥18

Sex: 49% F 241
CURB-65 ≥ 3

ICU admission
Long-term all-cause mortality

<30 ≥50 Siemens CLIA

Leow, L. (2011)
[42] 2008 4 months Pneumonia

severity
Hospitalised patients

with CAP
Age: 16–97

Sex: NA 112 30-day mortality <30 >50 Roche CLIA

Sabetta, J.R. (2010)
[26] 2009–2010 5 months Viral ARTI

severity Healthy adults Age: 20–88
Sex: 57% F 198 Duration of the illness <95 ≥95 Diasorin CLIA

He, C-S. (2013) [15] 2011 4 months URTI
severity Young athletes Age: 18–40

Sex: 31% F 103 Duration of the illness
SSC 12–30 >120 HPLC

Abbreviations: ARTI = acute respiratory tract infection; CAP = community acquired pneumonia; CURB-65 = confusion, uremia, respiratory rate, low blood pressure, age ≥ 65 years; ICU =
intensive care unit; LC = liquid chromatography; LRTI = lower respiratory tract infection; MS = mass spectrometry; NA = not available; PSI = pulmonary severity score; SSC = symptom
severity score; URTI = upper respiratory tract infection.
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ARTI risk was measured by (i) self-report via survey questionnaire or symptom diaries (n = 10),
or (ii) clinical diagnosis with or without confirmation from X-ray or a laboratory test (n = 6). ARTI
severity was measured using a severity index (n = 6) such as CURB or CURB-65 (confusion, uraemia,
respiratory rate, low blood pressure, age ≥ 65), pulmonary severity score (PSI), or symptom severity
score (SSC); duration of the illness (n = 10); admission to hospital or intensive care units (n = 4);
or mortality (n = 6). All 24 studies had a moderate-to-high quality score (Table S1).

3.3. Association between 25(OH)D Concentration and Risk of ARTI

We included 14 of the 16 studies that assessed the association between 25(OH)D concentration and
risk of ARTI in the meta-analysis comparing the risk of ARTI in the lowest versus the highest 25(OH)D
category (N participants = 78,127) and 10 studies were included in the trend analysis (N participants =

69,048). Five studies reported risk of ARTI in at least three categories of 25(OH)D concentration and
the number of cases by exposure category; these were included in the evaluation of whether there is a
non-linear relationship between ARTI risk and 25(OH)D concentration (N participants = 37,902).

There was a significantly higher risk of ARTI in the lowest compared with the highest 25(OH)D
category (pooled OR 1.83; 95% CI 1.42–2.37; I2 = 78.8%; p < 0.001) (Figure 2). The pooled OR per
10 nmol/L decrease in 25(OH)D was 1.02 (95% CI 0.97–1.07; I2 = 72.7%; p < 0.001) (Figure 3). There was
a significant non-linear relationship (p for non-linearity = 0.029) with inflexion points at 60 nmol/L and
37.5 nmol/L. The steepest increased risk occurred below 37.5 nmol/L (Figure 4). Although both linear
and spline models were significant, the spline model fitted the data better.
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3.4. Association between 25(OH)D Concentration and Severity of ARTI

Five studies (N participants = 1495) were included in the meta-analysis of the odds of severe
ARTI or mortality combined, comparing the highest and the lowest 25(OH)D category and four
studies (N participants = 1422) were included in the mortality meta-analysis. The pooled ORs for
severity/mortality combined and mortality separately were 2.46 (95% CI 1.65–3.66; I2 = 49.8%; p = 0.093)
and 3.00 (95% CI 1.89–4.78; I2 = 66.7%; p = 0.029), respectively (Figure 5). The duration of ARTI was
also inversely associated with 25(OH)D concentration; low 25(OH)D concentration was associated
with a more prolonged ARTI in 7 out of 10 studies (Table 3).
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Table 3. Studies reporting duration of illness according to 25(OH)D concentration.

First Author (Published Year)
Duration of Illness Mean (SD)/Median (IQR) (Days)

p-Value
Lowest 25(OH)D Category Highest 25(OH)D Category

Mamani, M. (2017) 1 11.03 (7.5) 9.47 (6.1)
Lu, D. (2017) 1 26.2 (15.6) 15.5 (11.1) 0.014

He, C-S. (2013) 2 13 (10–17) 5 (5–7) ≤0.05
Sabetta, J.R. (2010) 2 6 (2–8) 6 (2–27)

Laaksi, I. (2007) 3 4 (2–6) 2 (0–4) 0.004
Kim, H.J. (2015) 1 12.5 (15.4) 10.3 (11.0) 0.570

Robertsen, S. (2014) 2 14 13
Yaghoobi, M.H. (2019) 4 13.4 (6.1) 13.7 (9.8) 0.880

Holter, J.C. (2016) 2 4 (2–6) 5 (3–10)
Scullion, L. (2018) 2,a 6.9 (4.3) 4.8 (3.0) 0.044

Abbreviations: IQR = interquartile range; SD = standard deviation. 1 Duration of hospitalisation; 2 Duration of
symptoms; 3 Number of days of absence from duty due to acute respiratory tract infection; 4 Duration of mechanical
ventilation. a The study reported duration of the symptoms, comparing winter and summer; the mean 25(OH)D for
winter was 86.8 nmol/L and for summer was 108.9 nmol/L.

3.5. Studies Excluded from the Meta-Analysis

Two studies were excluded from the meta-analysis of ARTI risk, and nine studies were excluded
from the meta-analysis of ARTI severity. Reasons for exclusion and the main findings of the excluded
studies are provided in Table S2. Studies that reported mean (SD) or median (interquartile range (IQR))
of 25(OH)D concentration in people with severe versus non-severe ARTI or mean (SD) severity score
by 25(OH)D category were excluded. As different scales were used to measure ARTI severity across
studies, we could not pool the mean difference in severity score between the highest and the lowest
25(OH)D category. Overall, results from 6/9 excluded studies showed an inverse association between
25(OH)D concentration and severity of ARTI measured by duration of the illness, severity score, or the
number of days absent from duty (Table S2).
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3.6. Subgroup Analysis and Publication Bias

We found evidence of significant heterogeneity (I2 = 78.8%, p < 0.001); therefore, we conducted
stratified meta-analyses to explore potential sources of heterogeneity (Figure 6A–D). The association
between 25(OH)D concentration and LRTI was stronger than for URTI, but the former had significant
heterogeneity (Figure 6A). Similarly, the association was stronger for studies with mean 25(OH)D
concentration < 60 nmol/L than in those with mean 25(OH)D concentration ≥ 60 nmol/L, but again
with significant heterogeneity (Figure 6C). There was only a small difference in the pooled OR between
studies that used a fully adjusted model and those that reported estimates from crude models or
those with less complete adjustment, but the latter had significant heterogeneity (I2 = 87.2%, p < 0.001)
(Figure 6D).
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Figure 6. Forest plot displaying odds ratios (95% confidence intervals) for the association between
25(OH)D concentration and (A) (i) upper respiratory tract infection, and (ii) lower respiratory tract
infection; (B) (i) self-reported, and (ii) clinically confirmed acute respiratory tract infection; (C) acute
respiratory tract infection in studies with (i) mean 25(OH)D concentration ≥ 60 nmol/L, and (ii) mean
25(OH)D concentration < 60 nmol/L; and (D) acute respiratory tract infection in studies with (i) crude
or non-fully adjusted effect estimate; and (ii) fully adjusted effect estimate; comparing the lowest versus
the highest 25(OH)D category.

The funnel plot shows evidence of significant publication bias (p = 0.024) (Figure 7), suggesting
that studies with small sample size and insignificant findings were not published.
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4. Discussion

In this systematic review and meta-analysis, we observed significant associations between
25(OH)D concentration and both risk and severity of ARTI, but with significant heterogeneity and
evidence of publication bias. There was a non-linear association between 25(OH)D concentration
and risk of ARTI, with evidence of a more marked increased risk for 25(OH)D concentration below
37.5 nmol/L.

Findings from our meta-analysis of ARTI risk, which includes the largest number of participants,
are consistent with results from previous reports. A meta-analysis published in 2015 as an abstract
(n = 44,301) reported an increased risk of ARTI in those with 25(OH)D < 50 nmol/l compared with those
≥ 50 nmol/L. The odds ratio was higher than we found (2.63 vs. 1.83); their analysis included children
as well as adults and they did not present an estimate for adults and adolescents only [11]. A systematic
review including 25 observational studies (10 in adults) reported significant inverse association between
25(OH)D concentration and risk of ARTI, but no formal meta-analysis was conducted [12]. The link
between 25(OH)D concentration and risk of ARTI was also reported separately for children and LRTI;
a meta-analysis showed a higher prevalence of vitamin D deficiency (< 50 nmol/L) in children with
LRTI (n = 550) [9].

This is the first study to our knowledge which performed a meta-analysis of the association
between 25(OH)D concentration and severity of ARTI. We found a stronger association between
25(OH)D concentration and severity of ARTI than with risk of ARTI (OR 2.46 vs. 1.83). The result
accords with findings from a systematic review that highlighted the potential link between vitamin
D deficiency and severe LRTI in children, but no meta-analysis was included [9]. It is difficult
to meta-analyse the association between 25(OH)D concentration and severity of ARTI because of
variability across studies with respect to variability in assay methods used to measure serum 25(OH)D;
the cut points used to categorise 25(OH)D concentration; the scales used to measure severity; and the
measures used to estimate effect. We could only include five studies in the severity meta-analysis so
were unable to assess the association within subgroups or investigate a potential non-linear trend.

Results from RCTs are inconsistent. Some trials found that vitamin D supplementation reduced the
risk of ARTI [48–50] while others did not [51–54]. The inconsistency may be due to differences in study
design, vitamin D supplement doses and regimens, and different baseline 25(OH)D concentration.
The most recent meta-analysis, using individual participant data, found that vitamin D supplementation
reduced the risk of ARTI more strongly in people with 25(OH)D concentration < 25 nmol/L [22].
Our findings suggest that supplementation may be of most benefit in people with a 25(OH)D
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concentration ≤ 37.5 nmol/L, with some benefit up to 60 nmol/L, although these values should
be considered with caution in light of the different assays and markedly varying cut point used
across studies.

We observed high heterogeneity, and this mostly persisted in subgroup analyses. Despite this,
the direction of effect was consistent; lower 25(OH)D concentration was associated with increased
risk or severity of ARTI. There are indications of publication bias, indicating that small studies that
showed no significant association were either not identified or not published. Publication bias has also
been observed in meta-analyses of RCTs [17,22]. It is thus possible that the benefits of vitamin D for
reducing risk or severity of ARTI have been over-estimated.

5. Conclusions

Our study is the largest to date and to the best of our knowledge, is the first to include a
meta-analysis of the association between 25(OH)D concentration and severity of ARTI. Our findings
suggest an important role of vitamin D in prevention of ARTI risk and severity, particularly in
people with low 25(OH)D concentration. However, it is challenging to identify an optimal 25(OH)D
concentration or a concentration below which supplementation would be of benefit due to the lack of
consistency in both 25(OH)D assays and reporting across studies. It is important to improve consistency
of reporting, as well as assays, to enable the field to move forward.
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